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Abstract Unit commitment decisions made in the day-ahead market and during
subsequent reliability assessments are critically based on forecasts of load. Tra-
ditional, deterministic unit commitment is based on point or expectation-based
load forecasts. In contrast, stochastic unit commitment relies on multiple load sce-
narios, with associated probabilities, that in aggregate capture the range of likely
load time-series. The shift from point-based to scenario-based forecasting necessi-
tates a shift in forecasting technologies, to provide accurate inputs to stochastic
unit commitment processes. In this paper, we discuss a novel scenario generation
methodology for load forecasting in stochastic unit commitment, with application
to real data associated with the Independent System Operator for New England
(ISO-NE). The accuracy of our methodology is consistent with that of point fore-
casting methods. The resulting sets of realistic scenarios serve as input to rigor-
ously test the scalability of stochastic unit commitment solvers, as described in
the companion paper. The scenarios generated by our method are available as an
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online supplement to this paper, as part of a novel, publicly available large-scale
stochastic unit commitment benchmark.

1 Introduction

Because operational constraints on thermal generation units require them to be
committed well in advance of when they may be needed, system operators daily
solve unit commitment optimization problems for the day ahead. Typically, schedul-
ing decisions for a day d are made on day d − 1, based on forecasts of uncertain
quantities such as hourly load and renewables output; these quantities are gen-
erally aggregated across buses, for each of a system’s load zones. In the context
of traditional deterministic unit commitment procedures, such forecasts take the
form of point or expected-value quantities – representing a single time series for
each forecasted quantity. Uncertainty associated with such forecasts is addressed
by maintaining a non-trivial level of generation reserves, which compensate for
deviations from the predicted quantities as day d operations proceed.

In contrast, stochastic unit commitment procedures [14,21] assume the avail-
ability of a number of forecast scenarios, each representing a distinct potential
time series of the forecasted quantities. Throughout, we use the term scenario in
a narrow sense, representing a full specification of all random data required to
specify a unit commitment problem, with associated probability of occurrence. In
aggregate, the set of scenarios should represent the range of possible behaviors on
day d. By explicitly representing forecast uncertainty through sets of scenarios, it
should be possible to significantly decrease generation reserve margins and conse-
quently reduce overall system operation costs [19]. However, the need for multiple
scenarios imposes fundamentally novel requirements on forecasting technologies,
which have yet to be adequately addressed.

Our goal in this paper is to present approaches and data sources for generating
quantifiably accurate and realistic load scenarios for use in stochastic unit commit-
ment. We focus on load, as opposed to renewables production, to tractably scope
our study. The procedures described below extend to wind and solar plant pro-
duction, which we will address in a future contribution. While stochastic market
clearing formulations for the day ahead wholesale electricity market have also been
proposed [2,13], we consider the reliability unit commitment (also called resource
adequacy assessment) process conducted by system operators. Consequently, we
generate scenarios specifying zonal or system-wide load rather than demand bids
by load-serving entities. We demonstrate the ability of Regional Transmission Op-
erators (RTOs) and other operator entities to generate accurate load scenarios for
use with stochastic unit commitment procedures, using data that are readily avail-
able. Our experiments proceed in the context of publicly available data from the
Independent System Operator of New England (ISO-NE). The resulting scenarios
are then used in the companion paper [4] to rigorously test the scalability of a sto-
chastic unit commitment solver. These scenarios and the resulting test cases are
publicly available, filling a critical need for researchers investigating the scalability
of stochastic unit commitment solvers. The value of stochastic unit commitment
compared to deterministic or other approaches, in terms of cost savings or relia-
bility improvement, is not addressed in either paper but is a subject for ongoing
rigorous testing.
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The remainder of this paper is organized as follows. Our methodology for data
transformation and fitting of load regression models is detailed in Section 2, and
includes a discussion of related literature and approaches. Preliminary results of
the proposed methodology for modeling summer data in a single ISO-NE load
zone were reported in [7]. This paper describes enhancements to our load model-
ing method by accounting for the non-weather-dependent component of demand
(Section 2.3), transforming data to aggregate across load zones as well as days of
the week (Section 2.4), and improving the process for segmenting days by weather
forecast (Section 2.5). We then describe our procedures for generating load scenar-
ios in Section 3. Comprehensive experimental results for all zones and all seasons
of a year are presented for data associated with ISO-NE in Section 4. We conclude
with a summary of our results in Section 5.

2 Load Forecasting Methodology

When forecasting load, the information available to operators on day d − 1 in-
cludes weather forecasts for day d, historical records of previous weather forecasts,
and historical actual system loads. Historical system load data exhibit temporal
patterns that vary according to season of the year, day of the week, and hour of
the day. While some temporal load patterns are predictable based on knowledge of
business hours and diurnal light patterns, the portion of load derived from heating
and cooling (both industrial and residential) depends strongly on weather. And
while numerical weather prediction models have become increasingly accurate over
the past several decades, there remains significant uncertainty associated with day-
ahead weather forecasts. The challenge for system operators is to form an accurate
and comprehensive picture of the day-ahead load, which not only includes point
forecasts of the load in each hour, but also acknowledges the precision (or lack
thereof) associated with those forecasts. To address this challenge, we introduce
a novel optimization-based method to develop a stochastic model for the load on
day d based on the weather forecast available on day d− 1.

2.1 Background

Common methods for short-term load forecasting can be categorized as either
based on artificial intelligence or statistical techniques [10]. Methods from artificial
intelligence, such as neural networks, are widely used but do not provide proba-
bilistic information that could be used to generate multiple probability-weighted
scenarios. Among statistical approaches, which can provide the required proba-
bilistic information, the most prevalent methods are time series and regression
models. Due to limited space, we do not provide a complete review but refer the
reader to recent surveys such as [6]. Instead, we now highlight samples of statisti-
cal approaches for load forecasting from the recent literature, focusing on achieved
accuracy and limitations for purposes of scenario generation.

The weather variable most commonly used to predict load is temperature, due
to its influence on heating and cooling requirements. Other variables considered
include humidity and cloud cover, although their impacts on load are much smaller
than that of temperature. Humidity increases load in the summer, again due to
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cooling requirements. In contrast, cloud cover increases load in the winter (due to
increased lighting requirements) and reduces load in the summer.

Liu et al. [12] analyze the nonlinear relationship between temperature and load,
using estimates derived from a nonparametric regression method. They fit a time
series model to the residuals of the load-temperature regression and consider lags
of 1, 24, and 168 hours in their day-ahead forecasting model. Using actual historical
temperature and load data obtained from a US utility, they demonstrate an out-
of-sample mean absolute percent error (MAPE) of 1.2% for their 24-hour-ahead
forecasts. Hong et al. [10] develop a multiple linear regression model of load that
considers temperature, hour, type of day, and month as independent variables; the
model additionally contains a linear term trend, and terms to capture interactions
among the independent variables. Using actual weather data to predict hourly
loads for a US utility over a one-year time period, they obtain an out-of-sample
MAPE of 4.6%. Black [1] also uses a multiple linear regression model to examine
the influence of weather on load, but instead focuses on summer weekdays in the
region served by ISO-NE. Time-of-day effects are captured through a separate
regression model for each hour of the day, each considering temperature, humid-
ity, and irradiance as independent variables. The out-of-sample MAPEs yielded
by these models average 2-3% for the whole New England region and 3-4% for
individual subregions such as Connecticut and Southeast Massachusetts.

While “hind-casting” studies of the type described above (which use actual

historical weather data as input) are useful for identifying factors that influence
hourly loads, they do not reflect the accuracy or precision of load forecasts available
in practice – which necessarily rely on day-ahead weather forecasts, as opposed
to actual quantities. Further, while load forecasting remains a topic of active in-
vestigation, considerable emphasis persists on identifying a single most accurate
forecast trajectory [11]. For investigations into stochastic unit commitment, several
approaches for generating multiple trajectories have been used. An ad hoc proce-
dure was used in an early study to create scenarios of large increasing or decreasing
load ramps [21]. A common approach is to perturb a single forecast with some sto-
chastic error terms. In studies aimed at exploring the impacts of uncertainty on
unit commitment, these errors have been sampled from a Gaussian process [3],
densities derived from a jackknife procedure applied to historical forecast errors
[22], a uniform distribution [24], and an autoregressive process [18]. Typically, the
same process or distribution is used to generate perturbations in each hour of each
day in the study, whereas the hourly load forecast error distributions estimated
in this paper vary considerably. Perturbations that are independent across hours
may result in trajectories that do not well reflect the underlying temporal patterns
in the load – in particular, the ramps that pose the biggest challenge for operators
may not be depicted accurately. Time series methods have been used to directly
generate multiple trajectories for load [5]. Because of weekly and daily patterns
in the load as well as its persistence, the fitted processes contain autoregressive
terms with multiple lags. The propagation of uncertainty through the lagged terms
exposes a drawback of this approach when forecasting more than a few hours in
advance. Scenarios for hourly load on day d generated in the early afternoon of
day d − 1 depend on loads in the evening of day d − 1. Even if the forecasts a
few hours ahead are highly reliable, the process of stepping through the forecast
hours on day d accumulates increasing numbers of independent “random shocks,”
so that the variance of the generated loads for the later hours of day d grows
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unrealistically large. See, for example, Fig. 3 in [5], where the dispersion about
the mean in the generated set of scenarios appears to increase geometrically with
the length of time ahead. In reality, while weather forecasts diminish somewhat in
precision as they extend over a day, the ability to forecast load does not drop off
as drastically as the ensemble of time series trajectories would suggest.

Because statistical scenario generation approaches require large sample sizes
to obtain reliable solutions, scalability of the solution procedure may be compro-
mised. Our approach is based on approximation rather than sampling to cover the
space of likely possibilities, with fewer scenarios. Incorporating numerical weather
prediction models in stochastic optimization methods [25,20] may be a promising
alternative to generating scenarios from weather forecasts in advance of schedul-
ing. However, because – to the best of our knowledge – system operators do not
yet have access to such models but rather rely on purchased weather forecasts, we
believe our approach (starting with a single weather forecast for the day ahead) is
more relevant to current and near-term practice. Another method for short-term
load forecasting is to identify similar days within a historical database, where the
similarity is based on weather, day of the week, and time of year. For example,
ISO-NE identifies up to five similar days drawn from the same season with the
same day-type according to similarity of their actual temperatures to the forecast
temperature of the given day as well as similarity of forecast loads in the last hour
of the previous day [8]. Our method has some commonality with this approach, in
that we create segments of days that are similar in some sense. Then, within each
segment we employ a functional regression method to approximate the probability
distribution of load in each hour of the day ahead.

2.2 Methodology Overview

We use a multi-step procedure to control for season and type of day, and then
approximate the relationships between weather forecast data and the distribution
of hourly load sequences within segments of similar days. Starting from a historical
database of day-ahead hourly weather forecasts and corresponding actual loads,
our load forecasting methodology proceeds as follows:

1. Identify date ranges, or “seasons,” in which the relationship between weather
and load – disregarding day-of-week effects – is likely to be similar. This ad
hoc characterization qualitatively accounts for diurnal light patterns, heating
vs. air conditioning impacts, and sociological factors such as whether school is
in session.

2. Within each date range, transform the data to account for day-of-the-week
and zonal differences within the system. Then, segment the data into bands
based on forecast temperature. Data segmentation can in principle proceed
using multiple forecast quantities (e.g., temperature and humidity). However,
our experiments indicates these additional factors do not significantly improve
load forecast accuracy.

3. Within each segment, approximate the relationship between weather and load
via a regression function. Additionally, approximate the distribution of resid-
uals associated with the resulting regression model.
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Following completion of the segmentation and approximation steps, the pro-
cedure for generating load scenarios for a given day d (with associated weather
forecast generated on day d− 1) is given as follows:

1. Identify the date range DR to which day d belongs. Within DR, identify the
temperature segment to which the weather forecast for day d belongs.

2. Apply the regression function associated with the identified segment to the
weather forecast for day d.

3. Generate forecasted load scenarios for day d using distributions of the forecast
errors.

4. As necessary, perform inverse transformations of the load sequences to match
the day of the week and the zone.

The segmentation and approximation steps are fully described in the remain-
der of this section. Details of the load scenario generation process are described
subsequently in Section 3.

2.3 Estimating regression curves

The main idea to build the regression curve is to consider the weather forecast
from day d − 1 to day d and with this information build a regression function.
For this we use second order epi-splines [23] that minimize the deviations from
the observed load at the day d. For each day d in a given historical segment it is
assumed that the following information is available: the hourly load, ldh, and the
weather prediction for day d made on day d − 1. We use the temperature for all
months and in summer, we also add dew point.

We split the 24 hours of day d in NR sub-intervals (hk−1, hk] of length δ =
24/NR, and this determines the total number of coefficients that need to be esti-
mated, 2 · (NR + 2). In the summer, our regression curves will be built by relying
on two epi-splines of order 2, one associated with temperature, and a second one
associated with dew point. The construction implicitly assumes that the curves
we are fitting are twice differentiable, but not necessarily C2. In addition to the
parameter NR there is a curvature parameter, κ. The impact of the parameters is
explored in Section 4.2.

Further, we assume that the load can be represented as the sum of two com-
ponents:

– a non-weather component; i.e., a component which does not depend on the
weather forecast and which is related to the normal behavior of the consumers
at each segment,

– a weather component which depends on the weather forecast.

It is natural to think that the non-weather component depends on the segment
considered: independently of the weather, people in winter use a different amount
of energy than in the summer. So, for each segment we estimate the baseline load,
which is the average load for each hour in the segment.

Algorithmic details of regression using epi-splines is provided in [15]. In that
paper, an example is given where the regression function from the weather for day
d to R24, which was fit using data from some set of days D̂ as

r(d; D̂).
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In the present paper we include details of transformations needed to make the
method work effectively in our application. For these descriptions, we use the no-
tations d and do when respectively using forecast and observed weather to estimate
transformation functions. A more formal statement would include the regression
control parameters, but we omit these in the interest of clarity.

2.4 Data Transformation

Within a date range, we use transformations to combine data from disparate day
types and zones, prior to constructing regression and error distribution models.
Inverse transformations are performed to create load forecasts for particular day
types and zones. Without such transformations, there is typically insufficient his-
torical data to yield accurate forecasts. For example, dividing a year into 4 seasonal
date ranges yields approximately 12 samples for each week day type. Such small
sample sizes can lead to model over-fitting and associated out-of-sample prediction
inaccuracies. This problem is made more acute if clustering or other classification
schemes are imposed on the data within a date range.

Suppose we are given observed load profiles ld = (ld1, ..., l
d
24) ∈ R24 for a range

of dates d ∈ D. A portion of the the load is dependent upon weather factors, but
load profiles also depend on the type of the day, e.g., load patterns differ between
weekends and weekdays. Based on discernible differences in the average daily load
patterns [7], we consider six day types: one for each weekday and one representing
weekend days and holidays. We denote the set of day types as T . The set of all
dates belonging to a day type T ∈ T is denoted by DT . Clearly, each date maps
to a unique day type, such that

⋃
T∈T DT = D and DT ∩ DT ′ = ∅ if T 6= T ′.

While a regression model could be developed for each day type, this would
decrease the amount of data available for fitting significantly. Instead, we compute
a transformation for each day type to a standard reference day, which we somewhat
arbitrarily select as Wednesday. The midweek days have the highest average load
and have load profiles that are very similar to each other, fairly similar to Monday
and similar to the start of Friday.

The transformation is easily inverted, so that observed loads can be trans-
formed to “Wednesday” and forecast loads can be transformed back to the original
day type. In our analysis, we consider linear transformations to allow for simple
forward and inverse computation. We use observed weather to find a linear trans-
formation from each day type to Wednesday, but the transformation itself is not
based on observed weather so load forecasts and scenario generation can be based
entirely on data that are available in advance.

For each d ∈ DT , let wd = (wd1 , ..., w
d
24) denote the expected loads for our

reference day type (Wednesday) corresponding to the native day type loads ld =
(ld1, ..., l

d
24). We assume that for ∀T ∈ T , DT 6= ∅. For each d ∈ DT of day type T , wd

is computed as a regression ro(do;Dwed), where do denotes the observed weather
for day d.

Our goal is then to find a 24× 24 matrix AT such that

AT l
d ≈ wd ∀d ∈ DT . (1)
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We formally characterize Equation 1 as an optimization problem in which the
coefficients of AT appear as variables:

min
AT

∑
d∈DT

||AT ld − wd||. (2)

Note that this (very small) optimization problem might be linear or non-linear,
depending on the choice of norm.

Depending on the relative size of the available dataset {ld | d ∈ DT } and the
number of coefficients in AT , it may be necessary to introduce additional con-
straints and regularization terms to formulation (2). Another potential issue is
that the resulting AT may be ill conditioned, causing difficulties in the calcula-
tion A−1

T . Finally, nonsingularity needs to be enforced in (2), which can be easily
achieved by requiring that all coefficients above and below the diagonal of AT
equal zero; we use this simple approach in the experiments reported below.

In practice, a balancing area is typically divided into zones, for which loads are
forecast and reported. In order to increase the data available for regression and
error distribution estimation, we additionally combine data from disparate zones
in a fashion analogous to that described above for converting data associated with
different day types to a reference day type. Data are converted to correspond to
data from a reference zone in the same way that Wednesday is used as a reference
day.

2.5 Segmentation

For each date range, we partition the weather data for the composite dates into
distinct segments. The idea is to limit regression and error distribution inaccuracy
by only considering data with similar response characteristics. We segment based
on the forecast temperature, as inclusion of additional weather variables (e.g.,
via k-means clustering) failed to improve prediction accuracy in our experiments.
For each date range, we form a temperature distribution over which we introduce
cutting points that define the segments.

Let td∗ be a scalar representation of the hourly forecast temperatures for day
d ∈ D, where D is the set of days in the date range. In our experiments, we define
td∗ = td12, although alternative metrics such as average hourly temperature can
be substituted. We require scalar representations of hourly temperature vectors
to prevent data for a given day to be mapped to multiple error categories (see
Section 3).

We estimate the probability density function ft∗(·) of the temperature scalar
td∗ by fitting an exponential epi-spline [16,17]. We denote the corresponding cu-
mulative distribution function by Ft∗(·). To obtain NS segments of equal size,
we introduce the break points {b1, . . . , bNS+1} = {0, 1/NS , . . . , (NS − 1)/NS , 1} for
Fth(·) and then calculate the limit temperatures for each segment Si as

(ti, t̄i) = (F−1
t∗ (bi),F−1

t∗ (bi+1)), i = 1, . . . , NS .

Finally, considering the limit temperatures of each segment Si, i = 1, . . . , NS , we
group the days in the date range according to the rule:

d ∈ Si ⇔ td∗ ∈ [ti, t̄i).
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Fig. 1 Illustrative Load Regression Model and Error Distributions with Hour Partition H =
{1, 12, 24}.

3 Scenario Generation

To capture the notion that both the mean load response and error distribution
vary during the day, we split the day into parts and then categorize each portion
according to the relative error. A regression model is constructed for each of the
resulting day parts and associated error categories. Scenarios are then constructed
by sampling from paths constructed by selecting a specific error category for each
day part. This process is a specific instantiation of the general scenario generation
methodology detailed in [15].

Let H be the set of hours that define a partition of the hours in a day, specified
as follows:

H = {Hi}
|H|
i=1 , H1 = 1, H|H| = 24, Hi < Hi+1.

The elements Hi represent the partition end-points, e.g., the i-th part of the day
is given by the set of hours {Hi, · · · , Hi+1}. For each partition boundary Hi, we
compute the observed regression error εdi for each day d ∈ D as:

εdi = ldHi
− rHi

(d;D).

We estimate the distribution of these errors by fitting an exponential epi-spline
[16,17]. This process is graphically illustrated in Figure 1.

For each partition hour i, we denote the corresponding error probability density
function by fεi(·). Categories within fεi(·) can then be defined through identifica-
tion of break points of the associated cumulative distribution function Fεi(·), as was
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performed for temperature segmentation. Specifically, to generate NK equally sized
categories, we select the break points {k1, . . . , kNK+1} = {0, 1/NK , 2/NK , . . . , (NK−
1)/NK , 1} in order to obtain equally weighted categories for each partition of the
day. The resulting categories Cki are then defined as Cki = [F−1

εi (ki),F−1
εi (ki+1)),

where i ∈ {1, . . . , |H| − 1} denotes the day partition and k ∈ {1, . . . , NK} denotes
the category.

Given an hour partition H and associated error categories Cki , we sub-segment
the days d ∈ D according to the observed regression model error at the correspond-
ing partition i. Specifically, let Dki denote the set of days in the segment for hour
i and error category k, defined as follows:

d ∈ Dki ⇔ εdi ∈ C
k
i .

For each sub-segment Dki , we fit a regression model r(d;Dki ), from which a vector
of predicted hourly loads r̂d,k is extracted for each day d ∈ Dki . Recall that each
sub-segment has an associated regression function. Consequently, for boundaries
in the middle of the day, there can be two points (i.e., two predicted loads, one
from the “left” day part and one from the “right,” which might be a different
error category.) We avoid discontinuities deriving a single regression curve per
category, r̂d,k, by combining the predicted points at the limit hours. In particular,
for h ∈ [Hi, Hi+1],

r̂d,kh = (
Hi+1 − h
Hi+1 −Hi

) · r̂d,kh,i + (
h−Hi

Hi+1 −Hi
) · r̂d,kh,i+1.

This process is illustrated in Figure 2.
Given regression models for each category Cki , the observed load forecast errors

are computed as
εkh,d = ldh − r̂

d,k
h .

We obtain a corresponding probability density function fεki
(·) by fitting an expo-

nential epi-spline. An illustrative example of this step is shown in Figure 3, where
NK = 2.

The error densities fεki
(·) serve as the primary input to the scenario generation

process. The first step in scenario generation involves the identification of a set of

distribution cut points C = {cz}|C|z=1 given as parameters, subject to c1 = 0.0 and
c|C| = 1.0. For each partition i and category k, we then calculate the conditional
expected value of the error in each interval defined by a pair of adjacent cutting
points:

E
[
εki |ε

k
i ∈ [cz , cz+1]

]
=

∫ cz+1

cz

x · fεki (x)dx∫ cz+1

cz

fεki
(x)dx

= ξk,zi

where ξk,si denotes the expected error in category k at cutting point z for hour
i. The conditional probability associated with this error point is the width of the
interval and the unconditional probability is obtained by multiplying by the width
of the error category (which is 1/NK). The number of cutting points can vary per
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Fig. 2 Regression of the Error Category Construction.

hour, as shown in Figure 4. In this illustrative example, C = {0.0, 1.0} for i = 1, but
C = {0.0, 0.5, 1.0} for i = 12, 24. The cutting points also need not be symmetric,
although they are in this example.

Given regression models (r̂k,dh,i ) for each hour partition boundary i and category
k, we compute loads at the partition boundaries via:

ld,k,zHi
= r̂d,kHi

+ ξk,zi .

For each hour Hi and each category Cki , this step yields |Ci| forecast load samples.
The final step in our scenario generation process is to connect these samples in
order to construct a set of paths that approximates the stochastic process repre-
senting load for the full day. This is simply done by calculating the scenario loads
at time h ∈ [Hi, Hi+1) by assuming that the deviation from the forecast varies
between the deviation at hour Hi and hour Hi+1. This process is illustrated in
Figure 5. Under this methodology, the number of paths (i.e., scenarios) generated
depends on the parameters. For example, if the number of cutting points is the
same value, |C|, for every hour partition boundary, then the number of scenarios
would be

NK · (|C| − 1)|H|−1.

The probability associated with each scenario must be computed as the product
of the unconditional probabilities of the points use to construct it. Note that the
generation process is deterministic, given a fixed set of historical input data.
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Illu

Fig. 3 Illustrative Error Category Regressions and Associated Error Distributions with Hour
Partition H = {1, 12, 24} and NK = 2 Categories.

4 Experimental Results

Although substantially better MAPEs can be achieved using standard leave-one-
out validation, we have generated our forecasts and scenarios by simulating a
rolling horizon as would be seen by a real-world system operator. In our experi-
ments, we consider data for ISO-NE. We begin by fitting the models using only
data from 2009 and 2010, and consider operations during 2011. As we simulate
the progression through the year, data from 2011 are added to the fit process as it
becomes historical. Specifically, we execute the complete methodology described
in Section 2.2 for each simulated day. The entire procedure takes minutes of wall
clock time to complete, and is therefore feasible in practice. Because our interest
is in demonstrating load scenario generation methods, and not actually providing
ISO-NE with load forecasts, we begin our simulation on January 2, 2011 and end
on November 20, 2011. Excellent methods exist for dealing with the holiday season
in the US [9], but their use is beyond the present scope. Further, we ignore August
28-30 of 2011, due to a hurricane event in the region. We partition the days of
the year into the following date ranges: Winter (January 2 – March 31), Spring
(April 1 – May 14), Summer (May 15 – September 14), and Fall (September 15 –
November 20).

As reported in Table 1, ISO-NE is divided into 8 load zones. Weather data
for each zone are taken from one or two weather stations. For zones with two
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Fig. 4 Distribution Cutting Points for Scenario Generation whenH = {1, 12, 24} and NK = 2.
For i = 1, C = {0.0, 1.0}. For i ∈ {12, 24}, C = {0.0, 0.5, 1.0}.

Load Zone Weather Stations Weights

ME PWM 1.0

NH CON 1.0

VT BTV 1.0

CT BDL, BDR 0.13, 0.87

RI PVD 1.0

SEMASS PVD 1.0

WCMASS BDL, ORH 0.5, 0.5

NEMASSBOST BOS 1.0

Table 1 Load zones for ISO-NE, with weather stations and corresponding weights

stations, an aggregate weather forecast is computed by weighting the composite
station data appropriately. Historical load data were obtained by ISO-NE through
their public web site (http://www.iso-ne.com/markets/hstdata/znl_info/hourly/
index.html). Hourly day-ahead temperature and dew point forecasts were provided
directly by ISO-NE.

As indicated in Section 2.4, we aggregate data from disparate zones to make
more data available to the fit process. Zone aggregation proceeds as follows, by

http://www.iso-ne.com/markets/hstdata/znl_info/hourly/index.html
http://www.iso-ne.com/markets/hstdata/znl_info/hourly/index.html
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Fig. 5 Illustrative Scenario Paths Corresponding to the Cutting Points Shown in Figure 4.

employing two reference zones: CT and NEMASSBOST. The RI, SEMASS, and
WCMASS zones are aggregated with the CT zone, while the ME, NH, and VT
zones are aggregated with the NEMASSBOST zone. This aggregation corresponds
to a partition of ISO-NE in approximately northern and southern regions, which
in turn share similar load characteristics. Within each partition, we select the zone
with the greatest load as the reference zone, minimizing the total load transformed.

4.1 Forecast MAPEs

We quantify load forecast accuracy as the Mean Average Percent Error (MAPE),
denoted by MAPE(NR, κ), as∑

z∈Z
∑
d∈D

∑
h∈H

(
lz,dh − E(lz,dh )(NR, κ)

)
/lz,dh

|Z| · |D| · |H| · 100 (3)

where Z, D, and H respectively denote the sets of load zones, dates, and hours
under consideration. NR and κ denote regression fit parameters. The aggregated
MAPEs obtained for each date range in 2011 are reported in Table 2, considering
NR = 24, κ = 500, and a variable number of temperature segments NS . The
corresponding disaggregated (by zone) MAPEs are reported in Table 3. We observe
that segmentation of the data by temperature does improve load forecast accuracy,
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Segments (NS)

Season 1 3 5 7

Fall 5.45 4.66 4.2 3.99

Spring 3.1 2.88 2.67 2.73

Summer 10.25 4.82 4.14 4.19

Winter 5.25 3.32 3.29 3.47

Table 2 Aggregated ISO-NE MAPEs for 2011

Fig. 6 Scenarios for Low Variance Load Forecast Day in 2011 for Zone CT

although the benefits either stagnate or decrease once NS ≥ 7. Further, the data in
Table 2 exhibit load forecast accuracies that are consistent with those obtained by
ISO-NE in practice, e.g,. see http://www.iso-ne.com/support/training/courses/

wem101/10_forecast_scheduling_callan.pdf. However, our method additionally
provides estimates of forecast variability, represented through a collection of load
scenarios.

We now briefly consider inclusion of dew point in addition to temperature in
the segmentation process. Intuitively, dew point can influence load by impacting
cooling requirements. In this case, we segment forecast data by forming a scalar
weather quantity based on a linear combination of temperature and dew point,
again using observations at h = 12. The resulting aggregate MAPEs are shown
in Table 4, and indicate that inclusion of dew point quantities can marginally
improve load forecast accuracy in specific contexts.

Finally, we provide exemplars of forecast load scenarios for the CT zone in
ISO-NE, for early summer days in 2011. We have selected low and high variance
load 50-scenario cases, respectively shown in Figures 6 and 7. We only show the

http://www.iso-ne.com/support/training/courses/wem101/10_forecast_scheduling_callan.pdf
http://www.iso-ne.com/support/training/courses/wem101/10_forecast_scheduling_callan.pdf


16 Yonghan Feng et al.

Segments (NS)

Season Zone 1 3 5 7

Fall NH 4.44 4.22 4.41 4.14

VT 3.52 2.91 2.95 3.04

ME 4.13 4.14 4.02 4.15

CT 8.31 7.12 6.77 6.51

RI 5.93 5.3 4.49 4.0

SEMASS 5.75 4.99 4.4 3.84

WCMASS 7.2 6.6 6.34 6.66

NEMASSBOST 4.82 4.63 4.19 4.07

Spring NH 3.14 3.46 3.69 3.93

VT 3.23 3.18 3.04 3.22

ME 4.25 3.9 4.07 4.0

CT 3.46 3.64 3.42 3.89

RI 3.24 2.97 3.27 3.32

SEMASS 3.05 2.93 3.17 3.24

WCMASS 3.74 3.5 3.8 3.98

NEMASSBOST 3.24 3.41 3.35 3.48

Summer NH 9.29 5.65 4.95 5.05

VT 5.64 3.75 3.41 3.4

ME 7.54 4.65 4.83 4.54

CT 11.22 6.42 5.98 5.84

RI 12.9 7.15 5.69 5.86

SEMASS 12.72 6.76 5.6 5.74

WCMASS 9.47 5.51 4.57 4.63

NEMASSBOST 11.34 6.17 5.78 5.32

Winter NH 4.99 3.88 3.78 3.82

VT 4.28 3.77 4.02 4.17

ME 4.1 3.87 3.65 4.05

CT 6.17 4.35 4.21 4.32

RI 5.23 3.81 3.56 3.84

SEMASS 5.34 4.05 3.76 4.11

WCMASS 5.46 3.69 3.84 3.95

NEMASSBOST 5.42 3.54 3.62 3.67

Table 3 Disaggregated Zonal ISO-NE MAPEs for 2011
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Segments (NS)

Season 1 3 5 7

Summer 10.55 4.73 4.06 4.06

Table 4 Aggregated ISO-NE MAPE for Summer 2011, Using Segmentation Based on Tem-
perature and Dew Point

Fig. 7 Scenarios for High Variance Load Forecast Day in 2011 for Zone CT

first 24 hours of the time series, which repeat (for the purpose of stochastic unit
commitment) for an additional 24 hours. With the exception of low-load hours 7
and 8, the scenarios shown in Figure 6 contain the actual load. Further, during
peak load for this day, the actual load closely mirrors the regression load. The
situation is reversed in Figure 7, where the regression load mirrors the actual
load in early hours of the day, but diverges after hour 18. These two particular
cases serve as an integral component of test cases for assessing our stochastic
unit commitment solver, described in the companion paper. All load scenario sets
generated for ISO-NE for 2011, either at the zonal or aggregate level, are publicly
available for unrestricted use.

4.2 Parameter Sensitivity for Model Fitting via Epi-Splines

To construct our regression models via epi-splines, it is necessary to specify values
for the following key parameters:

– NR: The number of intervals into which the hours of a day are sub-divided.
– κ: The maximum curvature of the regression model.
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While it is necessary to specify a particular norm (e.g., L1 or L2) when solving
the embedded optimization problems, in practice the choice of norm has almost
no impact on the resulting load forecast MAPEs. In contrast, accuracy is more
sensitive to the choice of NR and κ, as we now demonstrate.

First, we consider the impact of NR on load forecast accuracy. We compute
the MAPEs for NR ∈ {6, 12, 18, 24, 32, 48}, fixing NS = 5 and κ = 500. The results
indicate that the MAPE changes from about 4.7% to 4.5% over the range, with
values of 24 and above yielding nearly equal MAPEs.

Next, we consider the impact of κ on load forecast accuracy. Fixing NR = 24
and NS = 5, we compute MAPEs for κ ∈ {20, 40, 60, 80, 100, 150, 200, 500}. Ex-
tremely small values of κ do adversely impact the MAPEs by severely restricting
the curvature; however, over the range of κ we tested, there is essentially no sen-
sitivity.

5 Conclusion

In this paper, we introduce novel methods for obtaining distributions of forecast
load in each hour of day d, based on weather forecasts available on day d − 1.
Our goal is to estimate trends and error distributions from these data, in order
to generate probabilistic scenarios for the day-ahead load. We make use of trans-
formations of day types and load zones to provide data for general, functional
regression based on epi-splines that is conditional on the error category. We also
fit the error distribution using epi-splines.

Our experiments indicate that our models:

– Can be generated using data readily available by system operators.
– Can be produced in minutes of run time for multiple years of input data.
– Produce errors that are competitive in the aggregate with load forecasting

procedures used by industry.
– Obtain MAPE values for forecast load that are similar to those found in

hind-casting studies that eliminate weather forecast uncertainty by focusing
on strictly on actual or observed weather quantities.

While we do not examine multi-stage stochastic unit commitment models in the
companion paper [4], we note that our scenarios are tree-structured and conse-
quently can be effectively used in that context.

We continue to refine our methods, specifically by focusing on reducing predic-
tion errors associated with peak load periods and adapting the approach to times
of the year where temperature is not as strong a predictor of the load.

The sets of scenarios generated by the methods we describe serve as input to
rigorously test the scalability of stochastic unit commitment solvers, as described
in the companion paper. Scenarios generated in a rigorous way from realistic input
data are important for ongoing research in stochastic and robust unit commitment.
The scenarios generated by our method using data from ISO-NE for 2011 are
available as an online supplement to the paper.
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